Введение Структура педагогического эксперимента Математическая обработка педагогического эксперимента Характеристики положения вариационного ряда Характеристики рассеивания Корреляционное отношение Коэффициент вариации Доверительный интервал Ранговые корреляции и взаимосвязи в педагогических экспериментах Коэффициент корреляции Пирсона Корреляционные матрицы и графы Коэффициент конкордации Статистические гипотезы Критерий Стьюдента Критерий Крамера-Уэлча Критерий Фишера Критерий Пирсона Проверка нормальности распределения Критерий Манна-Уитни Критерий Колмогорова-Смирнова Критерий Вилкоксона Критерий знаков Критерий Макнамары Критерий Крускала-Уоллиса Критерий Фридмана Критерий Пейджа Значимость коэффициента корреляции Существенность коэффициента конкордации Новости науки Отзыв на книгу (проф. Смирнов Е.И.) Отзывы |
Корреляционные матрицы и графы
Значения корреляции для пар величин можно записывать в соответствующие столбцы и строки матрицы (таблицы). Например, для трёх x1, x2, x3 величин корреляционная матрица будет иметь вид:
В данном случае rij – это коэффициент корреляции между i-ой и j-ой характеристиками и очевидно, что он равен rji (rij=rji), а также rii=1 для всех допустимых значений i. Поэтому для упрощения корреляционную матрицу принято представлять в треугольном виде:
Построим корреляционную матрицу ранговой попарной связи результатов трёх тестирований 10 студентов. Результаты ранжирования тестирования указанных студентов представлены в таблице:
Для решения поставленной проблемы найдём коэффициент корреляции Спирмена для тестов A и B (r12), A и C (r13) и B и C (r23). После проведения расчётов получаем, что r12= 0,64, r23= –0,58, r13= –1. Тогда корреляционная матрица будет иметь следующий вид:
Наглядно попарную связь измеряемых величин удобно представить с помощью корреляционного графа. В вершинах корреляционного графа указывается измеряемая величина, а над рёбрами, соединяющими вершины, проставляется соответствующее значение коэффициента корреляции. Таким образом, полученную в предыдущем примере корреляционную матрицу легко заменить корреляционным графом.
Для определения степени зависимости нескольких результатов по совокупности используют множественный коэффициент ранговой корреляции.
|