Введение
Структура педагогического эксперимента
Математическая обработка педагогического эксперимента
Характеристики положения вариационного ряда
Характеристики рассеивания
Корреляционное отношение
Коэффициент вариации
Доверительный интервал
Ранговые корреляции и взаимосвязи в педагогических экспериментах
Коэффициент корреляции Пирсона
Корреляционные матрицы и графы
Коэффициент конкордации
Статистические гипотезы
Критерий Стьюдента
Критерий Крамера-Уэлча
Критерий Фишера
Критерий Пирсона
Проверка нормальности распределения
Критерий Манна-Уитни
Критерий Колмогорова-Смирнова
Критерий Вилкоксона
Критерий знаков
Критерий Макнамары
Критерий Крускала-Уоллиса
Критерий Фридмана
Критерий Пейджа
Значимость коэффициента корреляции
Существенность коэффициента конкордации
Отзыв на книгу (проф. Смирнов Е.И.)
хоккейный менеджер игра. . организация оценки земли и имущества . DJ go-go дискотеки в Москве relax Отзывы

Критерий Фишера

F - критерий Фишера является параметричесикм критерием и используется для сравнения дисперсий двух вариационных рядов

F - критерий Фишера является параметричесикм критерием и используется для сравнения дисперсий двух вариационных рядов. Эмпирическое значение критерия  вычисляется по формуле:

где - большая дисперсия, - меньшая дисперсия рассматриваемых вариационных рядов.

         Если вычисленное значение критерия Fэмп больше критического для определенного уровня значимости и соответствующих чисел степеней свободы для числителя и знаменателя, то дисперсии считаются различными. Иными словами, проверяется гипотеза, состоящая в том, что генеральные дисперсии рассматриваемых совокупностей равны между собой: H0={Dx=Dy}.

         Критическое значение критерия Фишера следует определять по специальной таблице, исходя из уровня значимости α и степеней свободы числителя (n1-1) и знаменателя (n2-1).

         Проиллюстрируем применение критерия Фишера на следующем примере. Дисперсия такого показателя, как стрессоустойчивость для учителей составила 6,17 (n1=32), а для менеджеров 4,41 (n2=33). Определим, можно ли считать уровень дисперсий примерно одинаковым для данных выборок на уровне значимости 0,05.

         Для ответа на поставленный вопрос определим эмпирическое значение критерия:  При этом критическое значение критерия Fкр(0,05;31;32)=2.

         Таким образом, Fэмп=1,4<2=Fкр, поэтому нулевая гипотеза о равенстве генеральных дисперсий на уровне значимости 0,05 принимается.

 

Непараметрические критерии

Непараметрические критерии не содержат расчёта параметров распределения и основаны на оперировании частотами или рангами. Непараметрические критерии, как правило, менее сложны в вычислениях и могут быть измерены в любой шкале, начиная от шкалы наименований.

 


Читайте также:


Почему не работает микрофон в ноутбуке. . Get discount using istock promo code . buy Amoxicillin no prescription . Use 6PM coupon code . Use Toms promo code . Rürup Rentenversicherung . custom essays Парадоксы симметриии асимметрии.
Примеры случайностей , а также закономерностей.
Случайные величины и их примеры.